Human dopamine D(3) receptors mediate mitogen-activated protein kinase activation via a phosphatidylinositol 3-kinase and an atypical protein kinase C-dependent mechanism.

نویسندگان

  • D Cussac
  • A Newman-Tancredi
  • V Pasteau
  • M J Millan
چکیده

The mitogen-activated protein kinase (MAPK) cascade is stimulated by both receptor tyrosine kinases and G protein-coupled receptors. We show that recombinant human dopamine D(3) receptors expressed in Chinese hamster ovary cells transiently activate MAPK via pertussis toxin-sensitive Gi and/or Go proteins. The involvement of D(3) receptors was confirmed by use of the D(3) agonists PD 128,907 and (+)-7-hydroxy-2-dipropylaminotetralin, which mimicked the response to dopamine (DA). Furthermore, haloperidol and the selective D(3) receptor antagonists S 14297 and GR 218,231 attenuated DA-induced MAPK activation; however, when tested alone, S 14297 weakly stimulated MAPK activity, suggesting partial agonist activity. The transduction mechanisms by which hD(3) receptors activate MAPK were explored with specific kinase inhibitors. Genistein and lavendustin A, inhibitors of tyrosine kinase activity, did not reduce DA-induced MAPK activation. In contrast, PD 98059, an inhibitor of MAPK kinase, and Ro 31-8220 and Gö 6983, inhibitors of protein kinase C (PKC), blocked DA-induced MAPK activation. However, MAPK activation was insensitive to PKC down-regulation by phorbol esters, indicating the involvement of an "atypical" PKC. Furthermore, MAPK activation involved phosphatidylinositol 3-kinase inasmuch as its inhibition by LY 294002 and wortmannin reduced DA-induced MAPK activation. In conclusion, this study demonstrates that stimulation of hD(3) receptors activates MAPK. This action is mediated via an atypical isoform of PKC, possibly involving cross-talk with products of phosphatidylinositol 3-kinase activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 56 5  شماره 

صفحات  -

تاریخ انتشار 1999